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Abstract 

In their creative process, designers employ 

techniques and strategies, moving from the abstract to 

the concrete through different physical and virtual 

means of representing form. Changes between the 

virtual and the physical are not always fluent. It would 

be a powerful tool for augmenting the design process 

if the designer was able to register and save each 

iteration of the physical and virtual models – a 

technique we call synchronization.  In this article we 

propose a novel method called Differential 3D 

Scanning that allows designers to save and update 

their models throughout the entire design process. The 

key idea is to use 3D scanning to automatically detect 

changes in the physical model, and to reflect them into 

the virtual model. During this process, the use of 

digital fabrication and 3D scanning devices could 

accumulate reconstruction errors which could be 

narrowed to the changed regions by our method. This 

technique helps to speculate about unfinished great 

works of art. 

Author Keywords: 3D Scanning; Change Detection; 

3D Modeling; Fabrication; Physical Modifications. 

ACM Keywords: H.5.2 User Interfaces. I.3.5.b 

Constructive solid geometry. I.4.8.l Surface fitting. 

I.2.10 Vision and Scene Understanding. 

1. Introduction 

Design is an iterative process. An essential feature 

of this process is the ability for the designer or 

designers to fluently translate abstract ideas into 

concrete form. In order to do this effectively, designers 

employ a variety of strategies for representing their 

ideas. These range from sketches to low-resolution 

models to CAD models to final prototypes. Each 

iteration is an opportunity to ask a question about a 

feature of the design, and these different modes of 

representations give the designers the tool set they 

need to understand, prototype, and critique their 

solution to any given design problem. 

The rise of digital fabrication has revolutionized 

this process. And at the same time, many designers 

bemoan the loss of “hands on” craft based approaches 

to prototyping. Is something important lost when you 

cannot touch the thing you are making?  Feeling 

something in your hands in order to give it form is a 

very different cognitive process than drawing 

something on a screen.  It is necessary to make 

assumptions about form and function when the model 

is more abstract, as when it is designed on screen, than 

when it emerges from a direct engagement with 

materials. We still believe that we can get the best of 

the two worlds; digital and physical modeling. By 

combining them into different iterations. 

Our intention is to suggest that new design tools can 

help designers more easily translate the abstract into 

the concrete, and more fluently move from the 

physical to the digital, and back to the physical. This 

is how ideas become real. 

Moving from the digital to the physical can be done 

using a digital fabrication device like a 3D printer, 

while moving from the physical to the digital requires 

using a 3D scanning device. These devices work by 

making a copy of the whole 3D model. While the 

designer usually applies only a few changes to the 3D 

shape of the object in each design iteration. We argue 

that we don’t need to operate on the whole 3D model, 

but only the relevant changes in each iteration. When 

one of the two models is modified, the changes only 

need to be transferred to the other model, a process we 

refer to as synchronization.  

Previous work [4] showed how we can transfer 

changes made in the digital model to the physical 

model using a 3d printer and a milling machine. In this 

article, we show how to use a 3D scanner to 

synchronize the computer model to changes made in 

the physical model. 

The main contributions of this work are: 

* To propose using Differential 3D Scanning as tool 

for designers to update their digital model with 

any physical changes. 

* Automatically detect physical changes in noisy 

3D scans, and segment the reference model 

accordingly into changed and unchanged with 

smooth boundaries between the segments.  
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* To reflect the detected changes using 3D surface 

reconstruction while using the extracted boundary 

curves as constraints. 

* To simplify the reverse engineering problem, by 

only considering the changed regions. 

Errors are introduced and accumulated during the 

proposed 3D design process by digital fabrication, 3D 

scanning devices, and surface reconstruction 

algorithms [See Figure 1]. By only transferring the 

changes we could restrict those errors to a few regions 

of the 3D model that changed in the design iteration, 

and we reuse the rest of the digital model from the 

previous iteration. 

There are many digital fabrication and 3D scanning 

technologies, each has its own problems and 

limitations. To use these devices for the design process 

–as proposed in this paper- we need them to provide a 

fast and user-friendly experience. So the designer can 

focus on his design and let the algorithm do the rest. 

And to encourage more designers to adopt this method 

we want this process to be more intuitive than digital 

modifications on a 3D modeling software. Thus it is 

important to select the right type of 3D scanning and 

digital fabrication devices and the right type of 

material that is easy to modify physically, and easy to 

scan. Nevertheless our method can handle the output 

of different types of devices with the right selection of 

parameters. 

2. Completing Michelangelo's Sculpture 

Before introducing our method details, we first 

show a design example using Michelangelo's statue. 

Any design process is only as effective as the tools 

that allow the creator’s imagination to find form in 

material. Perhaps no better example exists in the 

history of Western Art than Michelangelo for 

translating the clarity of the artist’s vision into stone. 

In a famous quote attributed to the artist, he describes 

this process with a single sentence: “Every block of 

stone has a statue inside it and it is the task of the 

sculptor to discover it.” 

It was this quote that was our inspiration for 

investigating how these design tools might be 

developed into creative strategies, which might be 

applied to the study of art history and the making of 

art more generally. We posed the question of whether 

it might be possible to finish an unfinished 

masterpiece by taking a scan of the original – one of 

Michelangelo’s “Slaves” (intended for the tomb of 

Julius II) - and to make a physical model, which could 

be completed by hand. In order to do this, we needed 

to be able to develop a process and the tools that would 

allow us to move fluently between the virtual model 

and the physical model. We needed to be able to both 

manipulate the model on the screen, and to manipulate 

the material by hand.  

Michelangelo did not have the benefit of CNC mills, 

3D printing, CAD, or scans. What he achieved, he did 

so with his own hands and eyes. The tools we are 

developing augment the creator’s hands and eyes, in 

order to speculate what could have been, and to give 

these speculations physical form.  The process we’ve 

developed for this project allowed us to speculate 

about what these missing pieces could have looked 

like in the mind of the artist, and to modify the 

materials accordingly. Figure 2 summarizes the 

experiment steps. 

Figure 1: Error sources in the proposed 3D design process. (a) A high resolution reference 3d model. (b) 3D 
printed copy. All details that are smaller than the 3D printer resolution are lost. (c) 3D scanned copy with several 
errors because plastic is shiny and hard to scan. (d) 3D reconstructed model with important details smoothed 
out. 
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\ 
Figure 2: Completing Michelangelo's unfinished work experiment steps. (a) Original statue in Florence. (Source: 
Wikimedia Commons, 'Awakening Slave' by Michelangelo, 2011). (b) High resolution scan of the statue. (c) Using CNC 
carving machine to obtain a physical copy. (d) Scan after CNC carving. (e) Designer manual carving to finish Michelangelo’s 
work. (f) Scan after manual carving. (g) Aligning the two models using ICP. (h) The reference model segmented into 
unchanged region in green, and changed region in red, separated by the smooth boundary curves. (i) Changed region 
deleted and replaced by the reconstructed changed region of the point cloud. (j) Regions merged. 
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At first we obtained a high quality scanned model 

of the statue from the digital Michelangelo project [10] 

which has around 2 million vertices. Then we used a 

milling machine to carve this model in foam. Then a 

designer used sculpting tools to carve and finish the 

unfinished parts of the model physically. At last we 

used a 3D scanner to scan the modified model, and we 

applied our method to get the final virtual model. 

Here we notice that our method kept the original 

high resolution parts of the virtual model that were 

carved by Michelangelo. And only updated the parts 

that were modified by the designer and merged the two 

together. If we had tried to reconstruct the surface of 

the whole model, we would have lost many details 

from the original high resolution parts (Figure 2 part 

b), since 3D reconstruction tends to smooth out the 

result. 

3. Method 

Starting with a point cloud that contains the physical 

changes and a reference model. The designer could use 

some 3D modeling software to manually apply the 

changes to the reference model. For example MeshLab 

is a popular open source software that could be used 

for 3D alignment and surface reconstruction. Then the 

designer could use mesh editing software -like 3D 

Studio Max- to find the difference between the two 

models by applying a Boolean difference operation. 

The problem is that the two models match everywhere, 

except for a few regions. So many faces will be 

incident to each other, which is problematic when 

applying the Boolean operation. At the same time all 

small deviations due to fabrication and scanning errors 

will be detected by this method, and cannot be 

avoided. 

Instead of this manual work, we propose an 

automated method that automatically aligns the two 

models, then finds and reflects the changes. The input 

to our method is a point cloud resulting from scanning 

the modified physical model and the 3D model of the 

previous iteration; which we refer to as “reference 

model”. 

The digital representation of the reference 3D 

model varies between different applications. See 

[Figure 3]. It could be a polygon mesh, for example in 

some animations applications, or it could be a CAD 

model as used in mechanical and industrial 

applications. A polygon mesh is collection of a 

vertices (3D points) connected by edges to form faces. 

While CAD models are based on ideal mathematical 

formulations. There are several representations for 

CAD models, like parametric surface patches 

(NURBs) or Constructive Solid Geometry (CSG). 

CSG represents the model by using a tree where leafs 

are the simple geometry objects (sphere, cylinder, 

cube, etc), and the links are the binary Boolean 

operators applied to them (union, intersection, 

difference). We used CSG as the representation for 

CAD models for its simplicity. 

  

Figure 3: 3D Digital Representations. Point Cloud is a collection of 3D points resulting from 3D scanning. Polygon Mesh is a 
collection of a vertices (3D points) connected by edges to form faces (Used for 3D printing). CAD models are based on ideal 
mathematical formulations, for example a tree of binary Boolean operators applied to simple geometry objects (Left Figure 
Source: Wikimedia Commons, Illustration of CSG tree, 2005). 
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The method for transferring the physical changes to 

the reference model consists of three steps: 

 Aligning the two models 

 Finding the changes 

 Reflecting the changes 

The first two steps are similar for polygon mesh and 

CAD models, while the third step requires surface 

reconstruction of the changes in the case of polygon 

mesh, and reverse engineering of the changes in the 

case of CAD models. 

4. Polygon Mesh  

For polygon meshes we propose an algorithm that 

segments the model into changed and unchanged 

regions with a smooth boundary curves that separates 

them. Then it uses these boundary curves in the surface 

reconstruction of the changed regions in the point 

cloud and merge them to the mesh. See [Figure 4]. 

 

 

Figure 4: Method steps for Polygon Mesh. (a) Physical Modification: an example of design iteration, where the original model is fabricated, 
physically modified (cut) and scanned back resulting in a point cloud with changes. (b) 3D Registration: Align the two models. (c) Calculate 
Distance: Change detection by measuring the distance between the two models, the color map shows the distance as a percentage of the 
diameter of the bounding box of the model. (d) Segmentation: Model segmented into changed region (red) and unchanged region (green). 
(e) Remove old faces: Changed region faces are removed. (f) Add new faces: The scanned Point Cloud is segmented as well into changed and 
unchanged regions, here we reconstructed the changed region only (blue) while using the boundary curves as strong constraints. (g) Then we 
cut the reconstructed surface using the boundary curves, and we smooth the result. The updated merged model could be used as an input 
for the next iteration. 
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4.1. 3D Registration 

The physical object could be placed in an arbitrary 

position and orientation after modifications, and it 

needs to be aligned with the original virtual model in 

order to perform accurate comparison to find the 

changes, this process is called 3D registration. The 

inputs are a point cloud that resulted from scanning, 

and polygon mesh that represents the reference model, 

in our method we used the popular Iterative Closest 

Point (ICP) method [5]. Our method determines the 

initial alignment by aligning the principal axes of the 

two models. 

4.2. Finding the Changes 

The translation from the virtual to the physical and 

back from the physical to the virtual is not for free. 

Each device has a specific resolution, all details in the 

original model smaller than this resolution will be lost 

[See Figure 1]. For example, in milling machines, the 

drilling bit thickness determines the resulting 

resolution. While in FDM 3D printers, the extruder 

nozzle diameter controls the resolution. The same 

thing happens in 3D scanning devices.      

 Beside this systematic deviation from the reference 

model, noise errors will be introduced and 

accumulated by the digital fabrication and 3D 

scanning devices. And in some cases whole regions of 

the model might be deviated for example due to gaps 

in 3D scanning. 

It is important for our method to distinguish 

between those deviations and the actual physical 

changes as applied by the designer. To do so, the 

applied physical changes must be larger than the 

largest resolution of the used devices so it can be 

detected. 

Then when we detect changes we must use a 

threshold that is larger than the largest resolution of 

the used devices with some tolerance for the noise 

level and smaller than the smallest physical change. 

Knowing the specifications of the used devices could 

help in automating the selection of the threshold 

distance, which should be the same for the same 

settings. 

The virtual and physical models match everywhere 

except in few regions, where they deviate from each 

other. Each of the changed regions has a part in one 

model and another corresponding part in the second 

model. And the size of those two parts might be 

different between the two models. For example, a 

small region in the reference model could be elongated 

in the point cloud. Establishing the correspondence 

between the changed regions in the two models might 

be hard. See [Figure 6]. So we decided to separate the 

process in two steps: 

 Find the changed regions in the point cloud. Here 

we project each point in the point cloud to the 

reference model (polygon mesh) and calculate the 

Euclidean distance between the point and the 

projection point, and if that distance is larger than 

a threshold we mark this point as a change.  

 Find the changed regions in the reference model 

(polygon mesh). To do that, we operate on the 

reference model vertices. And for each vertex we 

estimate the signed distance from this vertex to 

the point cloud using the non-convex hull surface 

(NCH) algorithm [6], and if this signed distance 

is larger than a threshold we mark this vertex as a 

change.  

 

We give the user the control to decide the threshold 

distance T after which the difference is considered a 

change:  

|𝑑| > 𝑇 

The user can specify this threshold as a percentage 

Figure 6: Two directions distance. Middle: distance from mesh 
to point cloud. Right: distance from point cloud to mesh.  

Figure 5: User specifies a threshold distance T after which 
we consider the new model (red point cloud) changed 
from the original surface (black line). Left: Clear change, 
we can use threshold T=0. Right: Smooth gradual change, 
the user decides a specific threshold distance for T. 
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of the diameter of the 3D model, or as an absolute 

value in the units of his 3D model whatever it be. See 

[Figure 5]. We also give the user the ability to ignore 

specific regions that might result from noise. 

4.3. Finding the Boundary Curves 

In the previous step, we calculated a signed distance 

field on the vertices of the reference model that 

represents the distance to the point cloud. For the 

unchanged regions part, the distance between the two 

models should be close to zero. While in the changed 

regions this distance is positive or negative (depending 

whether the change is to the inside or outside of the 

model). We need to find the iso-contour where this 

distance field goes from zero to negative or positive.  

 

To extract those boundary contours we follow these 

steps: 

1- Classify each vertex in the polygon mesh as 

changed or unchanged by using the distance 

threshold.  

2- Find the edges of the mesh that has one vertex 

marked as change and the other marked as 

unchanged. 

3- For each such edge extract the iso-vertex, 

where the boundary curve intersect the edge. 

We do that by using a sort of binary search. 

Where in each recursive step we evaluate the 

signed distance from the center of the edge to 

the surface and depending on the result we 

discard half of the edge and call the function 

again using the other half. We do that 

recursively until the two vertices of the edge 

approach each other. 

4- We connect those iso-vertices to form one 

connected contour for each changed region 

that separates that region from the rest. 

4.4. Fixing the Curve Displacement  

Depending on the noise and the specified threshold 

distance, the resulting contour might not be smooth, 

and might be displaced from the actual real boundary 

by some distance [See Figure 7]. To fix this problem 

we run an optimization algorithm where we restrict the 

iso-contour vertices to stay on the surface while we 

minimize the distance between those vertices and the 

nearest K points of the changed region in the point 

cloud. At the same time we minimize the distance 

between the two vertices of every iso-contour edge to 

keep it smooth. We run gradient decent to minimize 

the following energy function for every contour vertex 

𝑥 until we get the desired result: 

 

𝐸(𝑥) =  𝜆1 ∑‖𝑥𝑖 − 𝑥𝑗‖
2

(𝑖𝑗)

 

+ 𝜆2 ∑ ∑‖𝑥𝑖 − 𝑝𝑗‖
2

𝐾

𝑗𝑖

 

𝑝𝑗 ∈ { 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠(𝑥𝑖 , 𝐾) } 

 

The first term is a sum over the iso-contour edges 

that contain 𝑥, while the second term is a sum over K 

nearest changed points to 𝑥. We restrict the iso-

contour vertices to stay on the surface by projecting 

them to the mesh after each optimization step. 

Although the contour vertices are restricted to stay on 

the surface, the contour edges are not. To fix this 

problem we project the contour edges onto the mesh. 

The result is a smooth contour that approximate the 

real boundary between the changed and the unchanged 

regions. We cut the mesh along this contour, as we 

need to get rid of the old changed regions of the mesh, 

and replace them with the new reconstructed regions 

from the point cloud. 
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Now we have every vertex classified as change or 

not-change and also the contour boundary that 

separates the changed and the unchanged regions. To 

get a complete segmentation of the mesh we need also 

to segment the faces. To do that we find incident faces 

for each vertex -except for the vertices along the 

contour boundary- and we mark the faces as changed 

if the vertex is changed, and vice versa. After the 

segmentation, we delete the faces marked as changed 

from the mesh in order to replace them with the new 

reconstructed regions from the point cloud. 

4.5. Reflecting the Changes 

To reflect the changes we need to apply some sort 

of Boolean operations (intersection, union, subtraction 

and difference) to remove and add new the changes to 

the original model. 

There are several previous works [1] that applied 

Boolean operations to 3D polygon meshes. In our 

algorithm the changes happen on a point cloud instead. 

So we need to reconstruct the surface to get a polygon 

mesh.  All previous studies reconstruct the surface of 

the whole point cloud before applying Boolean 

operations, without taking the advantage of the 

reference model.  

We propose a surface reconstruction method that 

only need to reconstruct the changed regions of the 

point cloud, and takes into consideration the boundary 

curves that segments the model into changed and 

unchanged regions. So our surface reconstruction 

algorithm takes as an input a group of points (the 

unchanged regions) and a boundary curve that 

surrounds them. 

There are a few studies that handled surface 

reconstruction for open surfaces with boundaries. For 

example Lin et al [2] used the shape boundaries for 

composition of multiple shapes. Also the peel 

algorithm [3] builds a Delaunay mesh using the 

sampled points while handling the boundary curves. 

But it suffers from robustness problems.  

The input to this step is a list of contour lines that 

were extracted in the last step, and a list of changed 

points from the point cloud. And we need to 

reconstruct those changed points while using contour 

lines as boundary constraints to the surface 

reconstruction problem. There are several methods for 

surface reconstruction, but implicit volumetric 

methods work well especially in the presence of noise 

and holes in the model, for this reason we tried two 

implicit methods; Poisson [7] and SSD [8], while 

adding the boundary curves as constraints. Constraints 

could be added in a hard or soft way, we choose to 

Figure 7: Optimization procedure to fix the displacement of the boundary curve. (a) Original reference model. 
(b) Scanned model of the 3D printed part that was cut by a cutting tool. (c) Color map of the signed distance 
field between the two models. (d) Using zero threshold (zero level set) will result in detecting many small 
changed regions (due to noise and errors). (e) Using high threshold will result in one displaced boundary curve. 
(f) Running the optimization algorithm will drag the boundary curve toward the right position. (g) The corrected 
position of the boundary curve. (h) The final model cut by the boundary curve. 
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apply soft constraints, by sampling the contour curves 

and adding those sample points to changed regions of 

the point cloud. In details we follow the following 

steps: 

1- Construct a volumetric grid (we could use a 

regular grid or an octree) that contains both the 

changed points and the contour lines, and for each 

cell it must have at most one contour vertex. 

2-  Reconstruct the surface while using samples of 

the contour lines as point constraints (by simply 

adding those samples to the changed regions of 

the point cloud, the more samples we add, the 

more we pull the surface toward them.), now the 

reconstructed surface will pass nearby the 

boundary curves, but it will not stop at them, so 

we need to cut it. 

3- Cut the reconstructed surface by the planes 

defined by the normals of the contour lines, and 

get rid of the remaining part. 

4- Snap the vertices along the cut to the contour line 

vertices, and consolidate the vertices into ones. 

5- Smoothing: minimize an energy function that 

smooths the reconstructed surface (first three 

terms) while better approximate the changed 

points (last term). 

 

𝐸(𝑥, 𝑛) =  𝜆1 ∑‖𝑥𝑖 − 𝑥𝑗‖
2

(𝑖𝑗)

+ 𝜆2 ∑‖𝑛𝑓 − 𝑛𝑔‖
2

(𝑓𝑔)

 

+ 𝜆3 ∑ (𝑛𝑓
𝑡 (𝑥𝑖 − 𝑥𝑗))

2

(𝑖𝑗_𝑓)

 

+ 𝜆4 ∑ ∑ ∑ (𝑛𝑓
𝑡 (𝑝𝑓 − 𝑥𝑖))

2

𝑘𝜖𝜙𝑓𝑖𝜖𝑓𝑓

 

 

   

If we let vertices positions be constant, then the 

energy function becomes quadratic in the normals, and 

vice versa. So we need to run a few iterations of 

gradient decent with constant vertex position, then a 

few iterations with constant normal. Vertices on the 

contour are projected back to the contour after each 

smoothing step to keep them on the contour.  

5. CAD Model and Reverse Engineering 

For some applications the changes might need to be 

reflected to a CAD model. See [Figure 8]. Retrieving 

the CAD model from a point cloud or a polygon mesh 

is a complex operation that is called reverse 

engineering. The advantage of our approach is that we 

only need to reverse engineer a few regions and not the 

whole object.  

The goal of reverse engineering is retrieve the 

designer original intent, which are represented usually 

using ideal shapes (ex: cylinder, sphere, etc). To do 

that we can search for those shapes in the point cloud 

using RANSAC for example [9]. But the result will be 

much better if we can segment the point cloud and fit 

these shapes directly to different segments. In general 

most reverse engineering algorithms have two main 

components: 

1- Segmentation: to segment the model into surface 

patches (planes, spheres, quadratic surfaces, etc. 

usually based on surface curvature). 

2- Fitting: where we directly fit geometric objects 

(planes, quadratic surfaces, free-form surfaces) to 

different surface patches.  

Segmentation is the hard step and the result depends 

on the sensitivity parameter. In most cases the user has 

to select some regions to merge them manually. 

RANSAC-based segmentation could result in many 

false detected shapes and it could miss existing shapes. 

   In our case since we do our own segmentation and 

extract boundary Iso-curves, that makes things 

simpler. and if we restrict the problem such that the 

change is always of one type (one change at a time, so 

the user can for example only cut the object one cut, 

or drill one hole at a time...etc.). Then we don't need 

any further segmentation at all. This solves most of the 

problems that prevents automatic reverse engineering, 

but also restricts the application of our method to only 

one change at a time. 

   The problem then reduces to finding the best fitting 

plane, quadratic surface, or a free-form surface to the 

changed points. To do that we used the same algorithm 

as [9] and applied it to the group of changed points and 

the sampled points from the boundary Iso-curves, we 

found that adding these sampled points greatly 

enhances the result of fitting. 

   The result of the fitting step is a group of shapes 

(spheres, cylinders, cones…etc), to simplify the 

operation we used Constructive Solid Geometry 

(CSG) to design the reference CAD models, so we 

simply add the shapes resulted from fitting to the CSG 

tree by either a subtraction or addition operation. See 

[Figure 8]. 
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6. Limitations 

Physical modifications are more intuitive for many 

designers when compared to digital modeling. For 

thousands of years, people have used various tools to 

modify physical objects. Lots of hand and power tools 

exist to perform operations such as cutting, sculpting, 

and carving.  

Furthermore, many designers already integrate 3D 

scanning devices with their physical sculpting work. 

For example, in the car industry; they still use clay 

modeling to build a full-size clay models of the car. 

Then they use a 3D scanner to digitize the designed 

model. Oftentimes, designers need to design around or 

fit their design to existing objects, for example in the 

medical field, they use a 3D scanner to create digital 

models of body parts and teeth in order to make a 

perfectly fitting prosthetics and dentures. They also 

could be used to design fixes or extensions to existing 

broken and old parts. Or to scan parts of a larger 

model, for example Automobile customizers use 3D 

scanning to scan the existing part of a car that they 

want to customize, ensuring that the customization 

piece will fit seamlessly.  

More recently, 3D printers are also being employed 

as the starting point for the physical sculpting process 

with the invention of Cx5 sculptable 3D printing 

material [11]. Cx5 is perfect for this approach, since it 

can be easily modified, and easily scanned (since it is 

fully opaque). Designers start with digital modeling 

(or 3D scanning), then they 3D print their model using 

the Cx5 sculptable material. Then they have the ability 

to hand-sculpt the finest details onto their 3D prints. 

In this paper we build on this existing approach of 

combining physical design with digital fabrication and 

3D scanning devices. We expect our approach to be 

more easily adopted by designers who already employ 

3D scanning and digital fabrication devices in their 

work. So the real condition for it to be adopted is how 

easily the designer could employ these devices in his 

work compared to the use of a digital software. With 

Figure 8: Method steps for reverse engineering CAD model changes. (a) CSG tree where different Boolean operations are 
applied to simple geometric shapes. (b) Resulting model. (c) A 3D scan of the modified object (holes drilled and support 
added). (d) The two models aligned. (e) A color map shows the signed distance between the two models. (f) Changed regions 
in the point cloud extracted. (g) Changed regions separated. (h) The result of fitting planes and cylinders to each changed 
region. These resulting shapes are added to the original CSG tree with simple union or difference operators. (i) The updated 
CAD model. 
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wider spread of 3D scanning and printing 

technologies, more designers will become familiar 

with them, and adopt our approach. 

Another limitation is to 3D scan shiny and 

translucent objects, like most of 3D printed plastic 

parts. On the other hand, there are opaque 3d printing 

material that could be used to overcome this problem. 

Also 3D scanning and digital fabrication (for 

example: 3D printers) are slow in general, which may 

limit the number of design iterations using them. For 

3D scanners to get an accurate model of the object, we 

need to scan it from different viewpoints to cover all 

occluded parts, which take even a longer time. 

Otherwise, important details could be lost. For 

instance, in our experiments, several drilled holes were 

missed by the scanner. One way to address this is by 

using a hierarchal approach to scanning, where we 

make a faster low resolution scan of the object, and 

once we find the changed regions, we can use a slower 

high resolution scanning technology to accurately scan 

them. 

7. Next Steps 

The fluent translation from the virtual to the 

physical and from the physical to the virtual will have 

many implications in the near future. By giving artists, 

art historians, designers, engineers, and many other 

creative professionals better tools to navigate between 

these spaces, new possibilities will emerge.  

   Moving forward, we intend to build upon the work 

outlined in this paper. We believe we can further refine 

these processes while working with partners in these 

fields to design the tools that can help them in their 

work. 
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9. Conclusion 

We presented a method to detect the 3D differences 

between a scanned model (point cloud), and a 

reference model (polygon mesh or CAD model), and 

then to reflect those changes to the reference model. 

   The method reuses the reference model with its 

higher accuracy, and saves the designer time by 

reconstructing only the small changed regions. 
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