
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316501481

Differential 3D Scanning

Article in IEEE Computer Graphics and Applications · May 2017

DOI: 10.1109/MCG.2017.39

CITATIONS

2
READS

330

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Vanishing point detection in single images View project

Interactive Digital Fabrication View project

Ammar Hattab

Brown University

6 PUBLICATIONS 18 CITATIONS

SEE PROFILE

Gabriel Taubin

Brown University

231 PUBLICATIONS 11,417 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ammar Hattab on 12 June 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/316501481_Differential_3D_Scanning?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316501481_Differential_3D_Scanning?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Vanishing-point-detection-in-single-images?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Interactive-Digital-Fabrication?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ammar_Hattab?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ammar_Hattab?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Brown_University?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ammar_Hattab?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Taubin?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Taubin?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Brown_University?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Taubin?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ammar_Hattab?enrichId=rgreq-785baab2de963d2ce5f8a595e2c43f29-XXX&enrichSource=Y292ZXJQYWdlOzMxNjUwMTQ4MTtBUzo3Njg5NzM3MjEzMzM3NjBAMTU2MDM0OTAzMDY0NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

Differential 3D Scanning

Ammar Hattab, Ian Gonsher, Daniel Moreno and Gabriel Taubin

Brown University

Abstract

In their creative process, designers employ

techniques and strategies, moving from the abstract to

the concrete through different physical and virtual

means of representing form. Changes between the

virtual and the physical are not always fluent. It would

be a powerful tool for augmenting the design process

if the designer was able to register and save each

iteration of the physical and virtual models – a

technique we call synchronization. In this article we

propose a novel method called Differential 3D

Scanning that allows designers to save and update

their models throughout the entire design process. The

key idea is to use 3D scanning to automatically detect

changes in the physical model, and to reflect them into

the virtual model. During this process, the use of

digital fabrication and 3D scanning devices could

accumulate reconstruction errors which could be

narrowed to the changed regions by our method. This

technique helps to speculate about unfinished great

works of art.

Author Keywords: 3D Scanning; Change Detection;

3D Modeling; Fabrication; Physical Modifications.

ACM Keywords: H.5.2 User Interfaces. I.3.5.b

Constructive solid geometry. I.4.8.l Surface fitting.

I.2.10 Vision and Scene Understanding.

1. Introduction

Design is an iterative process. An essential feature

of this process is the ability for the designer or

designers to fluently translate abstract ideas into

concrete form. In order to do this effectively, designers

employ a variety of strategies for representing their

ideas. These range from sketches to low-resolution

models to CAD models to final prototypes. Each

iteration is an opportunity to ask a question about a

feature of the design, and these different modes of

representations give the designers the tool set they

need to understand, prototype, and critique their

solution to any given design problem.

The rise of digital fabrication has revolutionized

this process. And at the same time, many designers

bemoan the loss of “hands on” craft based approaches

to prototyping. Is something important lost when you

cannot touch the thing you are making? Feeling

something in your hands in order to give it form is a

very different cognitive process than drawing

something on a screen. It is necessary to make

assumptions about form and function when the model

is more abstract, as when it is designed on screen, than

when it emerges from a direct engagement with

materials. We still believe that we can get the best of

the two worlds; digital and physical modeling. By

combining them into different iterations.

Our intention is to suggest that new design tools can

help designers more easily translate the abstract into

the concrete, and more fluently move from the

physical to the digital, and back to the physical. This

is how ideas become real.

Moving from the digital to the physical can be done

using a digital fabrication device like a 3D printer,

while moving from the physical to the digital requires

using a 3D scanning device. These devices work by

making a copy of the whole 3D model. While the

designer usually applies only a few changes to the 3D

shape of the object in each design iteration. We argue

that we don’t need to operate on the whole 3D model,

but only the relevant changes in each iteration. When

one of the two models is modified, the changes only

need to be transferred to the other model, a process we

refer to as synchronization.

Previous work [4] showed how we can transfer

changes made in the digital model to the physical

model using a 3d printer and a milling machine. In this

article, we show how to use a 3D scanner to

synchronize the computer model to changes made in

the physical model.

The main contributions of this work are:

* To propose using Differential 3D Scanning as tool

for designers to update their digital model with

any physical changes.

* Automatically detect physical changes in noisy

3D scans, and segment the reference model

accordingly into changed and unchanged with

smooth boundaries between the segments.

2

* To reflect the detected changes using 3D surface

reconstruction while using the extracted boundary

curves as constraints.

* To simplify the reverse engineering problem, by

only considering the changed regions.

Errors are introduced and accumulated during the

proposed 3D design process by digital fabrication, 3D

scanning devices, and surface reconstruction

algorithms [See Figure 1]. By only transferring the

changes we could restrict those errors to a few regions

of the 3D model that changed in the design iteration,

and we reuse the rest of the digital model from the

previous iteration.

There are many digital fabrication and 3D scanning

technologies, each has its own problems and

limitations. To use these devices for the design process

–as proposed in this paper- we need them to provide a

fast and user-friendly experience. So the designer can

focus on his design and let the algorithm do the rest.

And to encourage more designers to adopt this method

we want this process to be more intuitive than digital

modifications on a 3D modeling software. Thus it is

important to select the right type of 3D scanning and

digital fabrication devices and the right type of

material that is easy to modify physically, and easy to

scan. Nevertheless our method can handle the output

of different types of devices with the right selection of

parameters.

2. Completing Michelangelo's Sculpture

Before introducing our method details, we first

show a design example using Michelangelo's statue.

Any design process is only as effective as the tools

that allow the creator’s imagination to find form in

material. Perhaps no better example exists in the

history of Western Art than Michelangelo for

translating the clarity of the artist’s vision into stone.

In a famous quote attributed to the artist, he describes

this process with a single sentence: “Every block of

stone has a statue inside it and it is the task of the

sculptor to discover it.”

It was this quote that was our inspiration for

investigating how these design tools might be

developed into creative strategies, which might be

applied to the study of art history and the making of

art more generally. We posed the question of whether

it might be possible to finish an unfinished

masterpiece by taking a scan of the original – one of

Michelangelo’s “Slaves” (intended for the tomb of

Julius II) - and to make a physical model, which could

be completed by hand. In order to do this, we needed

to be able to develop a process and the tools that would

allow us to move fluently between the virtual model

and the physical model. We needed to be able to both

manipulate the model on the screen, and to manipulate

the material by hand.

Michelangelo did not have the benefit of CNC mills,

3D printing, CAD, or scans. What he achieved, he did

so with his own hands and eyes. The tools we are

developing augment the creator’s hands and eyes, in

order to speculate what could have been, and to give

these speculations physical form. The process we’ve

developed for this project allowed us to speculate

about what these missing pieces could have looked

like in the mind of the artist, and to modify the

materials accordingly. Figure 2 summarizes the

experiment steps.

Figure 1: Error sources in the proposed 3D design process. (a) A high resolution reference 3d model. (b) 3D
printed copy. All details that are smaller than the 3D printer resolution are lost. (c) 3D scanned copy with several
errors because plastic is shiny and hard to scan. (d) 3D reconstructed model with important details smoothed
out.

3

\
Figure 2: Completing Michelangelo's unfinished work experiment steps. (a) Original statue in Florence. (Source:
Wikimedia Commons, 'Awakening Slave' by Michelangelo, 2011). (b) High resolution scan of the statue. (c) Using CNC
carving machine to obtain a physical copy. (d) Scan after CNC carving. (e) Designer manual carving to finish Michelangelo’s
work. (f) Scan after manual carving. (g) Aligning the two models using ICP. (h) The reference model segmented into
unchanged region in green, and changed region in red, separated by the smooth boundary curves. (i) Changed region
deleted and replaced by the reconstructed changed region of the point cloud. (j) Regions merged.

4

At first we obtained a high quality scanned model

of the statue from the digital Michelangelo project [10]

which has around 2 million vertices. Then we used a

milling machine to carve this model in foam. Then a

designer used sculpting tools to carve and finish the

unfinished parts of the model physically. At last we

used a 3D scanner to scan the modified model, and we

applied our method to get the final virtual model.

Here we notice that our method kept the original

high resolution parts of the virtual model that were

carved by Michelangelo. And only updated the parts

that were modified by the designer and merged the two

together. If we had tried to reconstruct the surface of

the whole model, we would have lost many details

from the original high resolution parts (Figure 2 part

b), since 3D reconstruction tends to smooth out the

result.

3. Method

Starting with a point cloud that contains the physical

changes and a reference model. The designer could use

some 3D modeling software to manually apply the

changes to the reference model. For example MeshLab

is a popular open source software that could be used

for 3D alignment and surface reconstruction. Then the

designer could use mesh editing software -like 3D

Studio Max- to find the difference between the two

models by applying a Boolean difference operation.

The problem is that the two models match everywhere,

except for a few regions. So many faces will be

incident to each other, which is problematic when

applying the Boolean operation. At the same time all

small deviations due to fabrication and scanning errors

will be detected by this method, and cannot be

avoided.

Instead of this manual work, we propose an

automated method that automatically aligns the two

models, then finds and reflects the changes. The input

to our method is a point cloud resulting from scanning

the modified physical model and the 3D model of the

previous iteration; which we refer to as “reference

model”.

The digital representation of the reference 3D

model varies between different applications. See

[Figure 3]. It could be a polygon mesh, for example in

some animations applications, or it could be a CAD

model as used in mechanical and industrial

applications. A polygon mesh is collection of a

vertices (3D points) connected by edges to form faces.

While CAD models are based on ideal mathematical

formulations. There are several representations for

CAD models, like parametric surface patches

(NURBs) or Constructive Solid Geometry (CSG).

CSG represents the model by using a tree where leafs

are the simple geometry objects (sphere, cylinder,

cube, etc), and the links are the binary Boolean

operators applied to them (union, intersection,

difference). We used CSG as the representation for

CAD models for its simplicity.

Figure 3: 3D Digital Representations. Point Cloud is a collection of 3D points resulting from 3D scanning. Polygon Mesh is a
collection of a vertices (3D points) connected by edges to form faces (Used for 3D printing). CAD models are based on ideal
mathematical formulations, for example a tree of binary Boolean operators applied to simple geometry objects (Left Figure
Source: Wikimedia Commons, Illustration of CSG tree, 2005).

5

The method for transferring the physical changes to

the reference model consists of three steps:

 Aligning the two models

 Finding the changes

 Reflecting the changes

The first two steps are similar for polygon mesh and

CAD models, while the third step requires surface

reconstruction of the changes in the case of polygon

mesh, and reverse engineering of the changes in the

case of CAD models.

4. Polygon Mesh

For polygon meshes we propose an algorithm that

segments the model into changed and unchanged

regions with a smooth boundary curves that separates

them. Then it uses these boundary curves in the surface

reconstruction of the changed regions in the point

cloud and merge them to the mesh. See [Figure 4].

Figure 4: Method steps for Polygon Mesh. (a) Physical Modification: an example of design iteration, where the original model is fabricated,
physically modified (cut) and scanned back resulting in a point cloud with changes. (b) 3D Registration: Align the two models. (c) Calculate
Distance: Change detection by measuring the distance between the two models, the color map shows the distance as a percentage of the
diameter of the bounding box of the model. (d) Segmentation: Model segmented into changed region (red) and unchanged region (green).
(e) Remove old faces: Changed region faces are removed. (f) Add new faces: The scanned Point Cloud is segmented as well into changed and
unchanged regions, here we reconstructed the changed region only (blue) while using the boundary curves as strong constraints. (g) Then we
cut the reconstructed surface using the boundary curves, and we smooth the result. The updated merged model could be used as an input
for the next iteration.

6

4.1. 3D Registration

The physical object could be placed in an arbitrary

position and orientation after modifications, and it

needs to be aligned with the original virtual model in

order to perform accurate comparison to find the

changes, this process is called 3D registration. The

inputs are a point cloud that resulted from scanning,

and polygon mesh that represents the reference model,

in our method we used the popular Iterative Closest

Point (ICP) method [5]. Our method determines the

initial alignment by aligning the principal axes of the

two models.

4.2. Finding the Changes

The translation from the virtual to the physical and

back from the physical to the virtual is not for free.

Each device has a specific resolution, all details in the

original model smaller than this resolution will be lost

[See Figure 1]. For example, in milling machines, the

drilling bit thickness determines the resulting

resolution. While in FDM 3D printers, the extruder

nozzle diameter controls the resolution. The same

thing happens in 3D scanning devices.

 Beside this systematic deviation from the reference

model, noise errors will be introduced and

accumulated by the digital fabrication and 3D

scanning devices. And in some cases whole regions of

the model might be deviated for example due to gaps

in 3D scanning.

It is important for our method to distinguish

between those deviations and the actual physical

changes as applied by the designer. To do so, the

applied physical changes must be larger than the

largest resolution of the used devices so it can be

detected.

Then when we detect changes we must use a

threshold that is larger than the largest resolution of

the used devices with some tolerance for the noise

level and smaller than the smallest physical change.

Knowing the specifications of the used devices could

help in automating the selection of the threshold

distance, which should be the same for the same

settings.

The virtual and physical models match everywhere

except in few regions, where they deviate from each

other. Each of the changed regions has a part in one

model and another corresponding part in the second

model. And the size of those two parts might be

different between the two models. For example, a

small region in the reference model could be elongated

in the point cloud. Establishing the correspondence

between the changed regions in the two models might

be hard. See [Figure 6]. So we decided to separate the

process in two steps:

 Find the changed regions in the point cloud. Here

we project each point in the point cloud to the

reference model (polygon mesh) and calculate the

Euclidean distance between the point and the

projection point, and if that distance is larger than

a threshold we mark this point as a change.

 Find the changed regions in the reference model

(polygon mesh). To do that, we operate on the

reference model vertices. And for each vertex we

estimate the signed distance from this vertex to

the point cloud using the non-convex hull surface

(NCH) algorithm [6], and if this signed distance

is larger than a threshold we mark this vertex as a

change.

We give the user the control to decide the threshold

distance T after which the difference is considered a

change:

|𝑑| > 𝑇

The user can specify this threshold as a percentage

Figure 6: Two directions distance. Middle: distance from mesh
to point cloud. Right: distance from point cloud to mesh.

Figure 5: User specifies a threshold distance T after which
we consider the new model (red point cloud) changed
from the original surface (black line). Left: Clear change,
we can use threshold T=0. Right: Smooth gradual change,
the user decides a specific threshold distance for T.

7

of the diameter of the 3D model, or as an absolute

value in the units of his 3D model whatever it be. See

[Figure 5]. We also give the user the ability to ignore

specific regions that might result from noise.

4.3. Finding the Boundary Curves

In the previous step, we calculated a signed distance

field on the vertices of the reference model that

represents the distance to the point cloud. For the

unchanged regions part, the distance between the two

models should be close to zero. While in the changed

regions this distance is positive or negative (depending

whether the change is to the inside or outside of the

model). We need to find the iso-contour where this

distance field goes from zero to negative or positive.

To extract those boundary contours we follow these

steps:

1- Classify each vertex in the polygon mesh as

changed or unchanged by using the distance

threshold.

2- Find the edges of the mesh that has one vertex

marked as change and the other marked as

unchanged.

3- For each such edge extract the iso-vertex,

where the boundary curve intersect the edge.

We do that by using a sort of binary search.

Where in each recursive step we evaluate the

signed distance from the center of the edge to

the surface and depending on the result we

discard half of the edge and call the function

again using the other half. We do that

recursively until the two vertices of the edge

approach each other.

4- We connect those iso-vertices to form one

connected contour for each changed region

that separates that region from the rest.

4.4. Fixing the Curve Displacement

Depending on the noise and the specified threshold

distance, the resulting contour might not be smooth,

and might be displaced from the actual real boundary

by some distance [See Figure 7]. To fix this problem

we run an optimization algorithm where we restrict the

iso-contour vertices to stay on the surface while we

minimize the distance between those vertices and the

nearest K points of the changed region in the point

cloud. At the same time we minimize the distance

between the two vertices of every iso-contour edge to

keep it smooth. We run gradient decent to minimize

the following energy function for every contour vertex

𝑥 until we get the desired result:

𝐸(𝑥) = 𝜆1 ∑‖𝑥𝑖 − 𝑥𝑗‖
2

(𝑖𝑗)

+ 𝜆2 ∑ ∑‖𝑥𝑖 − 𝑝𝑗‖
2

𝐾

𝑗𝑖

𝑝𝑗 ∈ { 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠(𝑥𝑖 , 𝐾) }

The first term is a sum over the iso-contour edges

that contain 𝑥, while the second term is a sum over K

nearest changed points to 𝑥. We restrict the iso-

contour vertices to stay on the surface by projecting

them to the mesh after each optimization step.

Although the contour vertices are restricted to stay on

the surface, the contour edges are not. To fix this

problem we project the contour edges onto the mesh.

The result is a smooth contour that approximate the

real boundary between the changed and the unchanged

regions. We cut the mesh along this contour, as we

need to get rid of the old changed regions of the mesh,

and replace them with the new reconstructed regions

from the point cloud.

8

Now we have every vertex classified as change or

not-change and also the contour boundary that

separates the changed and the unchanged regions. To

get a complete segmentation of the mesh we need also

to segment the faces. To do that we find incident faces

for each vertex -except for the vertices along the

contour boundary- and we mark the faces as changed

if the vertex is changed, and vice versa. After the

segmentation, we delete the faces marked as changed

from the mesh in order to replace them with the new

reconstructed regions from the point cloud.

4.5. Reflecting the Changes

To reflect the changes we need to apply some sort

of Boolean operations (intersection, union, subtraction

and difference) to remove and add new the changes to

the original model.

There are several previous works [1] that applied

Boolean operations to 3D polygon meshes. In our

algorithm the changes happen on a point cloud instead.

So we need to reconstruct the surface to get a polygon

mesh. All previous studies reconstruct the surface of

the whole point cloud before applying Boolean

operations, without taking the advantage of the

reference model.

We propose a surface reconstruction method that

only need to reconstruct the changed regions of the

point cloud, and takes into consideration the boundary

curves that segments the model into changed and

unchanged regions. So our surface reconstruction

algorithm takes as an input a group of points (the

unchanged regions) and a boundary curve that

surrounds them.

There are a few studies that handled surface

reconstruction for open surfaces with boundaries. For

example Lin et al [2] used the shape boundaries for

composition of multiple shapes. Also the peel

algorithm [3] builds a Delaunay mesh using the

sampled points while handling the boundary curves.

But it suffers from robustness problems.

The input to this step is a list of contour lines that

were extracted in the last step, and a list of changed

points from the point cloud. And we need to

reconstruct those changed points while using contour

lines as boundary constraints to the surface

reconstruction problem. There are several methods for

surface reconstruction, but implicit volumetric

methods work well especially in the presence of noise

and holes in the model, for this reason we tried two

implicit methods; Poisson [7] and SSD [8], while

adding the boundary curves as constraints. Constraints

could be added in a hard or soft way, we choose to

Figure 7: Optimization procedure to fix the displacement of the boundary curve. (a) Original reference model.
(b) Scanned model of the 3D printed part that was cut by a cutting tool. (c) Color map of the signed distance
field between the two models. (d) Using zero threshold (zero level set) will result in detecting many small
changed regions (due to noise and errors). (e) Using high threshold will result in one displaced boundary curve.
(f) Running the optimization algorithm will drag the boundary curve toward the right position. (g) The corrected
position of the boundary curve. (h) The final model cut by the boundary curve.

9

apply soft constraints, by sampling the contour curves

and adding those sample points to changed regions of

the point cloud. In details we follow the following

steps:

1- Construct a volumetric grid (we could use a

regular grid or an octree) that contains both the

changed points and the contour lines, and for each

cell it must have at most one contour vertex.

2- Reconstruct the surface while using samples of

the contour lines as point constraints (by simply

adding those samples to the changed regions of

the point cloud, the more samples we add, the

more we pull the surface toward them.), now the

reconstructed surface will pass nearby the

boundary curves, but it will not stop at them, so

we need to cut it.

3- Cut the reconstructed surface by the planes

defined by the normals of the contour lines, and

get rid of the remaining part.

4- Snap the vertices along the cut to the contour line

vertices, and consolidate the vertices into ones.

5- Smoothing: minimize an energy function that

smooths the reconstructed surface (first three

terms) while better approximate the changed

points (last term).

𝐸(𝑥, 𝑛) = 𝜆1 ∑‖𝑥𝑖 − 𝑥𝑗‖
2

(𝑖𝑗)

+ 𝜆2 ∑‖𝑛𝑓 − 𝑛𝑔‖
2

(𝑓𝑔)

+ 𝜆3 ∑ (𝑛𝑓
𝑡 (𝑥𝑖 − 𝑥𝑗))

2

(𝑖𝑗_𝑓)

+ 𝜆4 ∑ ∑ ∑ (𝑛𝑓
𝑡 (𝑝𝑓 − 𝑥𝑖))

2

𝑘𝜖𝜙𝑓𝑖𝜖𝑓𝑓

If we let vertices positions be constant, then the

energy function becomes quadratic in the normals, and

vice versa. So we need to run a few iterations of

gradient decent with constant vertex position, then a

few iterations with constant normal. Vertices on the

contour are projected back to the contour after each

smoothing step to keep them on the contour.

5. CAD Model and Reverse Engineering

For some applications the changes might need to be

reflected to a CAD model. See [Figure 8]. Retrieving

the CAD model from a point cloud or a polygon mesh

is a complex operation that is called reverse

engineering. The advantage of our approach is that we

only need to reverse engineer a few regions and not the

whole object.

The goal of reverse engineering is retrieve the

designer original intent, which are represented usually

using ideal shapes (ex: cylinder, sphere, etc). To do

that we can search for those shapes in the point cloud

using RANSAC for example [9]. But the result will be

much better if we can segment the point cloud and fit

these shapes directly to different segments. In general

most reverse engineering algorithms have two main

components:

1- Segmentation: to segment the model into surface

patches (planes, spheres, quadratic surfaces, etc.

usually based on surface curvature).

2- Fitting: where we directly fit geometric objects

(planes, quadratic surfaces, free-form surfaces) to

different surface patches.

Segmentation is the hard step and the result depends

on the sensitivity parameter. In most cases the user has

to select some regions to merge them manually.

RANSAC-based segmentation could result in many

false detected shapes and it could miss existing shapes.

 In our case since we do our own segmentation and

extract boundary Iso-curves, that makes things

simpler. and if we restrict the problem such that the

change is always of one type (one change at a time, so

the user can for example only cut the object one cut,

or drill one hole at a time...etc.). Then we don't need

any further segmentation at all. This solves most of the

problems that prevents automatic reverse engineering,

but also restricts the application of our method to only

one change at a time.

 The problem then reduces to finding the best fitting

plane, quadratic surface, or a free-form surface to the

changed points. To do that we used the same algorithm

as [9] and applied it to the group of changed points and

the sampled points from the boundary Iso-curves, we

found that adding these sampled points greatly

enhances the result of fitting.

 The result of the fitting step is a group of shapes

(spheres, cylinders, cones…etc), to simplify the

operation we used Constructive Solid Geometry

(CSG) to design the reference CAD models, so we

simply add the shapes resulted from fitting to the CSG

tree by either a subtraction or addition operation. See

[Figure 8].

10

6. Limitations

Physical modifications are more intuitive for many

designers when compared to digital modeling. For

thousands of years, people have used various tools to

modify physical objects. Lots of hand and power tools

exist to perform operations such as cutting, sculpting,

and carving.

Furthermore, many designers already integrate 3D

scanning devices with their physical sculpting work.

For example, in the car industry; they still use clay

modeling to build a full-size clay models of the car.

Then they use a 3D scanner to digitize the designed

model. Oftentimes, designers need to design around or

fit their design to existing objects, for example in the

medical field, they use a 3D scanner to create digital

models of body parts and teeth in order to make a

perfectly fitting prosthetics and dentures. They also

could be used to design fixes or extensions to existing

broken and old parts. Or to scan parts of a larger

model, for example Automobile customizers use 3D

scanning to scan the existing part of a car that they

want to customize, ensuring that the customization

piece will fit seamlessly.

More recently, 3D printers are also being employed

as the starting point for the physical sculpting process

with the invention of Cx5 sculptable 3D printing

material [11]. Cx5 is perfect for this approach, since it

can be easily modified, and easily scanned (since it is

fully opaque). Designers start with digital modeling

(or 3D scanning), then they 3D print their model using

the Cx5 sculptable material. Then they have the ability

to hand-sculpt the finest details onto their 3D prints.

In this paper we build on this existing approach of

combining physical design with digital fabrication and

3D scanning devices. We expect our approach to be

more easily adopted by designers who already employ

3D scanning and digital fabrication devices in their

work. So the real condition for it to be adopted is how

easily the designer could employ these devices in his

work compared to the use of a digital software. With

Figure 8: Method steps for reverse engineering CAD model changes. (a) CSG tree where different Boolean operations are
applied to simple geometric shapes. (b) Resulting model. (c) A 3D scan of the modified object (holes drilled and support
added). (d) The two models aligned. (e) A color map shows the signed distance between the two models. (f) Changed regions
in the point cloud extracted. (g) Changed regions separated. (h) The result of fitting planes and cylinders to each changed
region. These resulting shapes are added to the original CSG tree with simple union or difference operators. (i) The updated
CAD model.

11

wider spread of 3D scanning and printing

technologies, more designers will become familiar

with them, and adopt our approach.

Another limitation is to 3D scan shiny and

translucent objects, like most of 3D printed plastic

parts. On the other hand, there are opaque 3d printing

material that could be used to overcome this problem.

Also 3D scanning and digital fabrication (for

example: 3D printers) are slow in general, which may

limit the number of design iterations using them. For

3D scanners to get an accurate model of the object, we

need to scan it from different viewpoints to cover all

occluded parts, which take even a longer time.

Otherwise, important details could be lost. For

instance, in our experiments, several drilled holes were

missed by the scanner. One way to address this is by

using a hierarchal approach to scanning, where we

make a faster low resolution scan of the object, and

once we find the changed regions, we can use a slower

high resolution scanning technology to accurately scan

them.

7. Next Steps

The fluent translation from the virtual to the

physical and from the physical to the virtual will have

many implications in the near future. By giving artists,

art historians, designers, engineers, and many other

creative professionals better tools to navigate between

these spaces, new possibilities will emerge.

 Moving forward, we intend to build upon the work

outlined in this paper. We believe we can further refine

these processes while working with partners in these

fields to design the tools that can help them in their

work.

8. Acknowledgment

The work described herein was partially supported

by a Brown Fellowship, and by NSF grant IIP-

1500249.

9. Conclusion

We presented a method to detect the 3D differences

between a scanned model (point cloud), and a

reference model (polygon mesh or CAD model), and

then to reflect those changes to the reference model.

 The method reuses the reference model with its

higher accuracy, and saves the designer time by

reconstructing only the small changed regions.

References

[1] Pavić, Darko, Marcel Campen, and Leif Kobbelt.

"Hybrid booleans."Computer Graphics Forum. Vol. 29.

No. 1. Blackwell Publishing Ltd, 2010.

[2] Lin, Juncong, et al. "Mesh composition on models with

arbitrary boundary topology." IEEE transactions on

visualization and computer graphics 14.3 (2008): 653-

665.

[3] Dey, Tamal K., et al. "Isotopic reconstruction of

surfaces with boundaries." Computer Graphics Forum.

Vol. 28. No. 5. Blackwell Publishing Ltd, 2009.

[4] Teibrich, Alexander, et al. "Patching Physical Objects."

Proceedings of the 28th Annual ACM Symposium on

User Interface Software & Technology. ACM, 2015.

[5] Arun, K. Somani, Thomas S. Huang, and Steven D.

Blostein. "Least-squares fitting of two 3-D point sets."

IEEE Transactions on pattern analysis and machine

intelligence 5 (1987): 698-700.

[6] Taubin, Gabriel. "Non-convex hull surfaces."

SIGGRAPH Asia 2013 Technical Briefs. ACM, 2013.

[7] Kazhdan, Michael, Matthew Bolitho, and Hugues

Hoppe. "Poisson surface reconstruction." Proceedings

of the fourth Eurographics symposium on Geometry

processing. Vol. 7. 2006.

[8] Taubin, Gabriel. "Smooth signed distance surface

reconstruction and applications." Iberoamerican

Congress on Pattern Recognition. Springer Berlin

Heidelberg, 2012.

[9] Schnabel, Ruwen, Roland Wahl, and Reinhard Klein.

"Efficient RANSAC for point‐cloud shape detection."

Computer graphics forum. Vol. 26. No. 2. Blackwell

Publishing Ltd, 2007.

[10] Levoy, Marc, et al. "The digital Michelangelo project:

3D scanning of large statues." Proceedings of the 27th

annual conference on Computer graphics and

interactive techniques. ACM Press/Addison-Wesley

Publishing Co., 2000.

[11] Adam Beane. “Cx5 Sculptable Filament Kickstarter

Video.” Online video clip. YouTube. YouTube, 24

August 2016. Web. 9 October 2016.

12

10. Biographies

Ammar Hattab (armmar_hattab@brown.edu) is a

PhD student in Brown University in his fourth year,

working with Prof. Gabriel Taubin. He received a B.S.

degree in Computer Engineering from Yarmouk

University, Jordan, in 2008. He received a master’s in

Computer Engineering from Brown University in

2014. Ammar's research mainly focus on the

integration of 3D scanning and 3D printing. And how

to enhance existing 3D scanning techniques. While

focusing on how to use that to enhance the design

process. His research interests also include geometry

processing and computer vision. Ammar is interested

in making his own things. Among many things he

made; he built a 3d milling machine from scratch

during his undergraduate study. Prior to joining

Brown; Ammar worked as a software developer

around the world in California, Jordan, Malaysia and

Senegal for leading companies including Adobe,

eSense and T-FORCE.

Ian Gonsher (ian_gonsher@brown.edu) is an

Assistant Professor of Practice in the School of

Engineering and Department of Computer Science at

Brown University. His current teaching and research

focus on developing new strategies for design, and

enriching the creative process more generally. This

work takes a human centered and critical approach to

projects that reach across disciplines and contexts,

establishing a theoretical framework for the creative

process, and applying theses insights to the design of

projects that have social impact. This work is diverse

and multidisciplinary, including but not limited to

recent projects that have examined "situated robotics",

design for the developing world, design for

incarcerated populations, and design for early

childhood education. He holds an MFA from the

Rhode Island School of Design, and BFAs in Art

History and Industrial Design from the University of

Kansas. More information about his work can be

viewed on his website: http://gonsherdesign.com/

 Daniel Moreno (daniel_moreno@brown.edu)

received a B.S. degree in Computer Science from

Universidad Nacional de Rosario, Argentina, in 2011.

He received his Ph.D. degree in Computer

Engineering from Brown University, Providence, RI,

USA, in 2016. His research interests are precision 3D

scanning for metrology applications, structured light

and phase shifting algorithms, and digital geometry

processing. His work experience includes internships

at Evolution Robotics, Inc., NVIDIA Corp., and

Cognex Corp.

 Gabriel Taubin (gabriel_taubin@brown.edu) is

Professor of Engineering and Computer Science at

Brown University. He earned a Licenciado en

Ciencias Matematicas degree from the University of

Buenos Aires, Argentina, and a Ph.D. degree in

Electrical Engineering from Brown University. In

1990 he joined the IBM Research Division, where he

held various positions, including Research Staff

Member in the Exploratory Computer Vision Group,

Research Staff Member in the Visualization,

Interactions and Graphics Group, and Research

Manager of the Visual and Geometric Computing

Group. In 2003 he joined Brown University as a

faculty member. Taubin has held various visiting

positions, including: Visiting Professor of Electrical

Engineering at the California Institute of Technology;

Visiting Associate Professor of Media Arts and

Sciences at MIT; Visiting Professor of Computer

Science at the School of Exact and Natural Sciences,

University of Buenos Aires, Argentina; and Visiting

Professor of Engineering at Universidad Nacional del

Sur, Buenos Aires, Argentina. Prof. Taubin serve two

terms as Editor-in-Chief of the IEEE Computer

Graphics and Applications Magazine starting in 2010,

he is a current member of the Editorial Board of the

Geometric Models journal, and has served as associate

editor of the IEEE Transactions of Visualization and

Computer Graphics. Prof. Taubin was named IEEE

Fellow for his contributions to the development of

three-dimensional geometry compression technology

and multimedia standards, won the Eurographics 2002

Günter Enderle Best Paper Award, and was named

IBM Master Inventor. Prof. Taubin is a current

member of the Fulbright Specialist Roaster, and a

Fulbraigh Specialist grantee. He has contributed to the

field called Digital Geometry Processing with

methods to capture 3D shape, for surface

reconstruction, geometric modeling, geometry

compression, progressive transmission, signal

processing, and display of discrete surfaces. The 3D

geometry compression technology that he developed

at IBM was incorporated into the MPEG-4 standard in

the late 90's, and became an integral part of IBM

products.

View publication statsView publication stats

mailto:armmar_hattab@brown.edu
mailto:ian_gonsher@brown.edu
http://gonsherdesign.com/
daniel_moreno@brown.edu
mailto:gabriel_taubin@brown.edu
https://www.researchgate.net/publication/316501481

